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USE OF HYDRAULIC RESONANCE IN A PIPELINE WITH A GAS CAVITY TO 

CREATE A NONSTATIONARY JET 

S. P. Aktershev and A. V. Fedorov UDC 532.512 

High-velocity jets of liquid are widely employed in engineering for breaking down and 
cutting different materials. In some cases a steady jet is employed, but the results of 
[I] show that it is better to employ a nonstationary jet, because in this case the main 
mechanism of erosion of material is the high pressure of the hydraulic impact of the jet. 
In [2] several aspects of the creation of a nonstationary jet, emanating from a nozzle at 
the end of a pipe, are studied in application to hydraulic extraction of useful minerals. 
The oscillatory process in a pipe entirely filled with liquid is studied by the method of 
mathematical modeling. The nonstationary state of the jet was created either by pulsating 
the flow rate of the liquid at the pipe inlet or by periodically changingthe cross section 
of the jet with the help of an oscillating valve. 

It is well known that the presence of an air cavity in a liquid-filled pipe could give 
rise to significant oscillations of the velocity and pressure of the liquid in different 
nonstationary processes [3-7]. This is explained by the appearance of characteristic oscil- 
lations of a column of liquid with a frequency which is determined simultaneously by the 
parameters of the cavity, the liquid, and the pipe [8, 9]. Pressure oscillations during 
transient processes in a pipe are usually regarded as an undesirable phenomenon, so that 
the parameters of the air chamber are chosen so as to dampen these oscillations. At the 
same time there exist hydroimpact systems in which the oscillations of the liquid in a pipe 
without a gas cavity are specially created with the help of a valve which is periodically 
covered in order to obtain pressure pulses [i0]. Since the presence of a gas cavity in 
a pipe containing liquid can lead to a significant increase in pressure [6, 7] this effect 
could be useful in obtaining high pressures, as pointed out in [7]. 

Physical-Mathematical Formulation of the Problem. In this paper we shall study the 
possibility of employing resonance oscillations of a liquid in a pipe with a gas cavity 
and a nozzle at the end (Fig. i) to create a high-velocity pulsating jet. It is assumed 
that the oscillations arise as a result of modulation of the pressure Pin(t), which varies 

N 

according to the law Pin(t) = P0 ~ A~cos (2~7,~'T), at the pipe inlet. Here P0 is the sta- 
tionary pressure in the system, and Ap and T are the amplitude and period of the pulsation 
arising during pump operation. We shall study the problem in the approximation of an in- 
compressible liquid, making the assumption that the velocity of the liquid is identical 
in all sections of the pipe. Neglecting the propagation time of the disturbances along 
the pipe in this manner will be justified if ~T >> L (L and g are the length of the pipe 
and the velocity of propagation of the wave). We shall write the equations of motion of 
the liquid, the change in the volume of the gas cavity, and the adiabatic compression of 
the gas in the form 

pLd~/dT =. Pin-- P -  s (1) 
dV/d~= -- ~ d- ~ V 2  (p -- Pa)/P, PV ? = poV~, 

where ~, ~, and ~ are the velocity, density, and pressure of the liquid at the end of the 
pipe; f0 and s0 are the cross-sectional area of the pipe and the effective area of the noz- 

zle; V2(p--pa)/9 is the velocity of the jet; Pa is the atmospheric pressure; X is the 

coefficient of friction at the wall; D is the diameter of the pipe; and, y is the adiabatic 
index. 
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Fig. 1 

We shall determine the condition under which the pressure losses due to friction against 
the pipe wall can be neglected. Equating in order of magnitude the first two terms in the 
second equation in (i), we obtain the estimate t~ ~ Vo/~T for the characteristic velocity. 

In order to neglect the friction as compared with the inertial term in the equation of motion 

it is necessary that huT/D<<1 ; from here we obtain the condition %FolD/o<<1 �9 Since 

the characteristic value ~.~I0 -2 , for Vo/]oL ~ i this condition holds for not very long 

pipes (L/D ~ 10). 

Neglecting friction in the first of the equations (i) and transforming to dimensionless 

variables p = PJ~0, u = u/~/poVo/~iL%,~, t=7/]/~LVo/po?/o, we obtain, eliminating V from (i), 

du/dt = t + q c o s  ~ t - - p ,  dp/dt=p(~+v)/~ ( u - - 2 e ~ p - - p a ) .  ( 2 )  

Here q = Ap/p~;pa=p~/p~;e=soVT~o~/~]/~ and ~=2~V~LV0/T~/~0?~ . We shall seek the 

steady-state periodic solution of (2), corresponding to forced oscillations with fixed values 
of q and m (amplitude and frequency of pressure pulsations at the inlet). Thus we arrive 
at the formulation of the problem of nonlinear oscillations. The solution of the formulated 
problem can be constructed in the general case, for example, by integrating the system (2) 
numerically. We shall first study the particular case of small oscillations. 

Approximate Solution in the Linear Case. In the absence of pressure pulsations at 
the pipe inlet (q = 0) the stationary values are p = 1 and u=28Vi --p~. We linearize 

(2), setting p=1~p,u=28~fl--pa ~u,p<<1--pa, q<<i--Pa �9 As a result we obtain 

d ~ d t  = - - p  + q cos ~t ,  dp/dt = 

= - 2 k f i ,  k = V t - 

Eliminating u we arrive at the well-known equation for oscillations of a damped 
oscillator 

linear 

"_L:." _L 

p q- 2kp -~ p = q cos (0t. ( 3 )  

Here the coefficient k, which plays the role of friction, takes into account the energy 
losses in the system owing to outflow of liquid through the nozzle. The solution (3), corre- 
sponding to forced oscillations, is 

= A cos ((ot - -  a ) ,  A = q / ' V ( ~ 2 - -  1) 2 + 4k2~ 2, t g a  = 2 k o / ( t  - -  ~2). ( 4 )  

The maximum value of the amplitude with ~ . r e s =  ] / ~ - - 2 k  2 and the width of the resonance peak 

are determined by the quantity k. As the effective area of the nozzle is decreased the 
resonance peak becomes higher and narrower, remaining quite symmetric relative to ~zVI--2k2. 

Nonlinear Approximate Analytical Solution. We shall study resonance in the nonlinear 
formulation, making the assumptions that q<<i--pa and s << i. We introduce l~= l--p-i/v; 
then, eliminating u, the system (2) can be reduced to the equation 

"" t 
"~ = T [ i  - -  (1 - -  w)-~] + --~ q cos o t  

e$ (t - -  w) -(v+2)/2 

] / t  - -  P a  (1 - -  w )  ~ " 
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expanding (I-- w)-V in a Taylor series around w = O, we obtain with 

w -5 w -~-~,~,,~ -5 c~w 3 -5 ~ w ( l  - -  w)-(~+~)/~/ 

/ V 1 - -  Pa -5 YPa( w - -  a2 w2 -5 czs w3) = (q/Y) cos o t ,  

a2 = (7 -5 i)12, a3 : (7 -5 I)(? -5 2)/6.  

( s )  

We renormalize ( 5 ) ,  making the substitution w = ] / f e ~ - g  where e* = e//i--Pa �9 

the left side only terms of order ~, e*, we obtain 

+ v -5 V ~ g  ~ -5 ~*(~..;f + t,) = ~*/cos cot,/=q/,?~* V-~. 

Retaining on 

(6) 

We seek the approximate solution of (6) by the method of many scales [ii], using the variables 

To -- t, T I -- ~t, T 2 ~ e*t and representing y(t) in the form 

g = go(To,  T~, T 2 ) + F ~ y ~ ( r o ,  T~, T2) + e*y2(ro ,  I'1, r2) .  ( 7 )  

Substituting (7) into (6) and equating the coefficients of like powers of ~* on both sides of 
the equation we obtain 

D]go -+ go = 0; 

D ] Y l  + gx = - -  2D1D,~Ya - -  a.,_g~; 

D~g2 + Y2 = - -  2D1DoR1 - -  2a:goYl  - -  2D2DoYo - -  

- -  O~Yo - -  Dog  o - -  aag~ + / cos coT o. 

(8) 

(9) 

(lo) 

Here D i =O/OTi(j=O,i,2 ) . We write the solution (8) in the form ~o=A(T~,T2) e~To -5 74(TI, 

T2)e -iT~ (A and A are complex conjugate quantities). From here we obtain for (9) 

D~v~ + v~ = - (2~ aAtOT~.~% + ~2A~e~%)I-- (c.c.)--7~A~, 

where c.c. denotes the complex-conjugate term. Then the requirement that there be no secular 
terms in the solution of this equation leads to the condition 

OA/OTI = O. ( 1 1 )  

The solution of the inhomogeneous equation (9) assumes the form 

Yl  = (a2A2/3) e'Z'ir~ + ( c . c . ) - - 2 a 2 A A .  
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Using the expressions obtained for Y0 and Yl and the condition (ii) we write (i0) as follows: 

D'~g,, + g2 = (bq A~71 - -  2i OA/OT., - -  iA) e iTo - -  bt.,A'~e aiTo ~, 

+ ]e~~ + (r ~ = (~ ,+  i ) ( 2 ~ -  i) /6,  ~ = ( - r  1)(2,g + 3) /<  ( 1 2 )  

Introducing in the well-known manner the detuning parameter ~ = (o) -- ! ) /e*  and writing 

e i~T~ = e~T0e ~oT2, we eliminate the secular terms in the solution (12), assuming that the follow- 
ing equation is valid: 

_ _  r " { o T 2 / 9  ~ A ~ A  2g OA/OT 2 - -  iA T ] e  l ~  0. ( 1 3 )  

Representing A in the exponential form A = aei~/2 , where a and $ are real quantities, and 

separating real and imaginary parts in (13) we arrive at a system of two equations for a and 
~. We transform this system into an autonomous system, introducing the variable ~ = ~T 2 -- ~: 

Oa/OT~ = - - a / 2  -k (f12) sin % 
a&p/OT2 = aa q- }qaa/8 ~ (f12) cos % 

From here we find the steady-state values of a and ~, which satisfy the relations a ~/sin % 

2a(o 4- ~ae2/8) = --]cos % and the amplitude-frequency characteristic (AFC) of the system 

a" -F- 4a-~(( ~ § pla2/18) ~ = / 2 .  (14) 

We note that the AFC obtained is close to that of the Duffing equation [ii], but it differs 
from the latter by the sign of the term ~ia2/8. The jump phenomenon, i.e., a jump in the 
amplitude owing to the fact that a(m) is a three-valued function for some ~ > i, is well 
known for the AFC of Duffing's equation. This phenomenon also occurs for the oscillatory 
system under study. 

We shall study the condition under which a jump in the amplitude is possible for the 
AFC (14). Solving the equation for m we find 

- -  t - -  - -b t la2e*/8  ! ( t /2)e* V (//a) 2 - -  ~. ( 1 5 )  

The function a(~) will be multivalued, if d~/da = 0 for some a. The values of a satisfying 
this condition can lie only onthe lower branch of (15) (the minus sign in front of the 
square root). From here d(o/da = e*/~/2aaV~(f/a)~--1 -- ~las*/4 = O. We shall find the values 

of E* and f for which this equation has a solution for a; for this we write the equation in 
the form 

746 



~(z) -~ p~8"/2, ( 1 6 )  

w h e r e  z = :  (/8"/a)2; a n d S ( z ) = z f / / f e * 2 ~ z _  e*2. The  f u n c t i o n  ~ ( z )  h a s  a minimum a t  g r o i n -  4e'V3, 

~min = i G V 3 s * / g f L  T h e r e f o r e  Eq.  ( 1 6 )  h a s  two s o l u t i o n s  i f  ~ m ~ n < ~ l e * / 2 .  E x p r e s s i n g  f i n  

t e r m s  o f  q a n d  ~* we o b t a i n  t h e  r e l a t i o n  

e,8/q2 < 99~/(32 V~,~)" ( 1 7 )  

Thus  f o r  a g i v e n  v a l u e  o f  q a jump  i n  t h e  a m p l i t u d e  c a n  o c c u r  o n l y  i f  t h e  a r e a  o f  t h e  n o z z l e  
i s  s u f f i c i e n t l y  s m a l l  ( s m a l l  v a l u e s  o f  ~ * ) .  We n o t e  t h a t  f o r  t h e  AFC ( 1 4 ) ,  u n l i k e  D u f f i n g ' s  
e q u a t i o n ,  t h e  r e g i o n  w h e r e  t h e  f u n c t i o n  a ( ~ )  i s  n o t  s i n g l e - v a l u e d  l i e s  t o  t h e  l e f t  o f  ~ = 1. 
I n  t h e  n o n l i n e a r  a p p r o x i m a t i o n  u n d e r  s t u d y  t h e  r e s o n a n c e  p e a k  o f  t h e  AFC ( 1 4 )  i s  a s y m m e t r i c ,  
s i n c e  on t h e  w h o l e  i t  i s  i n c l i n e d  t o w a r d  l o w e r  f r e q u e n c i e s .  

We s h a l l  w r i t e  t h e  s o l u t i o n s  o b t a i n e d  Y0 and  y~ i n  t h e  r e a l  f o r m  

yo = (t/2) (e~(~o+~) + e - ~ ( ~ o + ~ l )  = a c o s  (~ : t  - q ; ) ,  

gl = (a2 a2/2) [(l/3)cos(2(ot - -  2qo) - -  1 ]. 

From here we find the approximate solution (5), returning to the variable w and using two 
terms of the expansion (7): 

w = a J / e * c o s ( o t  - -  ~) + (afe*aj2)[(l/3) cos (2~ t  - - 2 ~ )  - -  t ] .  ( 1 8 )  

F o r  a << 1 t h e  s e c o n d  t e r m  i n  ( 1 8 )  c a n  be  n e g l e c t e d .  Then p = ( t - -  w ) - v ~ t  ~ ? a l / - ~ - c o s ( o t - - ~ )  ' 

I t  i s  n o t  d i f f i c u l t  t o  show t h a t  n e a r  r e s o n a n c e  ~ z i t h i s  s o l u t i o n  t r a n s f o r m s  i n t o  t h e  s o -  
l u t i o n  ( 4 )  o f  t h e  l i n e a r i z e d  e q u a t i o n  ( 3 ) .  I n d e e d ,  i f  a 2 << o ,  t h e n  we o b t a i n  f r o m  ( 1 4 )  

a = f / V I  ~ 402 , w h e n c e  t h e  a m p l i t u d e  o f  t h e  p r e s s u r e  ~ a V ~ *  = q/e* V I  + 4 (o -- t)2/8 *z 

q /] /e  .2 ~ ( ( o - 1 ) 2 ( ~  ~ 1 )  2 = q / ] / 4 k  2 ~ ( ~ 2 -  t)~ ( . ~ , ~ , i ,  ~ t ~ 2 ) .  

The  n o n l i n e a r  a n a l y t i c  s o l u t i o n  f o u n d  i n  t h e  s m a l l  a m p l i t u d e  a p p r o x i m a t i o n  makes  i t  
possible to study the qualitative properties of the process under study. 

Numerical Solution in the General Case of Large Amplitudes. Discussion of Results. 

To study steady forced oscillations in the general case the system (2) was integrated by a 
rigidly stable numerical method [12] with fifth-order accuracy and the initial conditions 

p(0) ~ I, u(0) z 28V l--pa for fixed values of q and ~ until a periodic regime was established. 

The calculations were performed for p = 103 kg/m s (water) and ~ = 1.4 (air). Figure 2 shows 

curves of a~ versus the frequency, calculated from (14) for q = 10 -2 , ~* ~ 1.3~.I0 -~, satis- 

fying (17). The circles show the results of integration of the system (2). One can see that 
for small values of q the numerical solution is in good agreement with the approximate analy- 
tical solution. For frequencies 0.974 < ~ < 0.982, a (m) is a three-valued function and the 
lower branch is realized in the numerical calculation. The sections ab and bc of the curve 
are unstable. As the frequency is varied a jump-like change in amplitude occurs at the point 

= 0.982 (appearance of a jump). 

For q >> i0 -~ the form of the steady oscillations p(t) is strongly nonsinusoidal owing 
to the nonlinearity (2). Figure 3 shows the time dependence of the pressure during the per- 

iod with Pa ~ 0,1, 70/~ = 0.035,: V0/~L= 0A~ ~ =0.958, for different values of q (q = 0.i (i), 

0.3 (2), and 0.6 (3)). One can see that the pressure oscillations at the end of the pipe are 
much greater than the pulsations at the inlet. As q is increased not only the maximum value 

of Pmax increases, but the steepness of the peak increases also. The maximum value and rate 

of increase of the velocity of the jet ~(~=Ff(p--pa)/p~ which determine the effectiveness of 

its hydroimpact action on the material being broken down [2], also increase. We shall char- 
acterize the double amplitude of the pressure oscillations at the nozzle by the quantity 

R = Pmax/Pmin . The curves R(~), replacing in the case of large amplitude the AFC (14), are 
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presented in Fig. 4 for q = 0.i and Pa = 0.02 for different values of ~0/~ (s0/f0 = 0.035 
(i), 0.05 (2), 0.075 (3), and 0.i (4)). The form of the characteristics R(m) for large 
values of q qualitatively agrees with the AFC (14) for small amplitudes. The curves R(~) 
also slope toward lower frequencies, the left slope being steeper, and they have a maximum 
for m < i. As the area of the nozzle is decreased the resonance peaks become steeper and 
higher, and the maximum of the curve shifts to the left. For small values of s0/f0 a jump 
is observed for some m < i, i.e., R(~) becomes discontinuous, which also is in qualitative 
agreement with the condition (17), obtained for q << i. We note the significant maximum 
values Rma x ~ i0 for low degree of modulation of the pressure at the inlet q = 0.i. This 
indicates that the resonance regime is highly effective for obtaining significant pressure 
oscillations in front of the nozzle and therefore a high velocity of the outflowing jet. 

The steady oscillatory regime of the fluid flow, as follows from (2), is determined 
N 

completely by the parameters~q, w, Pa, and s*. For a pipe with concrete values of L, f0, 
and s o with fixed values of P0, AP, and T the condition of a resonance maximum can be real- 
ized by choosing the volume of the gas cavity V0, knowing the dimensionless frequency mres" 
In the case of small amplitude mres must give a maximum of the AFC (14) and is determined by 
the condition da/dm = 0. As one can see from (15) the equivalent condition do/da --~ 

holds for a = f. From here COres : ~ -- ~lq2/8~2e .2 �9 On the other hand, by definition, we* = 

2gsoL//oT V 2(p0--pa)/p~B is known. We have for E* the quadratic equation e*~ -- Be* --~.~== 

0 (~q2 = ~1q2/872) . From here we find e* = B/2 + ~re~ + B2/4, ~res= B/ IB/2 + ~re~ + B~-/4), V~,'/~L 

(Ores~2~)2~p0T2/gLU . In the general case of large amplitudes it is necessary to construct 

numerically the dependence R(~) for different values of s*, and then determine from them the 
resonance frequencies and find the intersection of the graphs (0rest= 0)res(e*)and Ore s- ~/g*. 

Neglecting the compressibility of the liquid, as done above, leads to the condition 
for the volume of the gas Vo:/~L>>po/pc 2 . As an example we shall study a pipe of length L = 
2.74 m, filled with water at a~pressure P0 = 5 MPa with a nozzle ~0/f0 = 0.035. Assume that 
at the inlet A~ = 0.5 MPa and T = 0.272 sec. For ~i)/~L~i the dimensionless quantities 

are q= 0.I, pa~0.02, e* =2-93-I0 -2, ~ ~ 0.900~, which corresponds to a maximum of the curve 

1 in Fig. 4. The time dependence of the velocity of the jet ~(t) for this example is shown 

in Fig. 5. The maximum hydroimpact pressure of the jet [2] pg ~ p$ (~m~x--~min) ~ 276.7 MPa 

is high enough to breakdown many materials. 

Thus the process of forced nonlinear oscillations of a liquid in a pipe with a gas 
cavity which appear when the pressure at the pipe inlet is modulated was studied. An approx- 
imate analytical solution was obtained in the small-amplitude approximation. It was shown 
that the resonance regime can be employed to obtain in the output section of the pipe a pul- 
sating high-velocity jet. 
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